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ABSTRACT
Antibiotic resistance is a growing global concern, with many ecological niches showing a high 
abundance of antibiotic resistance genes (ARGs), including the human gut. With increasing 
indications of ARGs in infants, this study aims to investigate the gut resistome profile during 
early life at a wider geographic level. To achieve this objective, we utilized stool samples data 
from 26 studies involving subjects aged up to 3 years from different geographical locations. 
The 32,277 Metagenome Assembled Genomes (MAGs) previously generated from shotgun 
sequencing reads from these studies were used for resistome analysis using RGI with the 
CARD database. This analysis showed that the distribution of ARGs across the countries in 
our study differed in alpha diversity and compositionally. In particular, the abundance of ARGs 
was found to vary by socioeconomic status and healthcare access and quality (HAQ) index. 
Surprisingly, countries having lower socioeconomic status and HAQ indices showed lower ARG 
abundance, which was contradictory to previous reports. Gram-negative genera, including 
Escherichia, Enterobacter, Citrobacter, and Klebsiella harbored a particularly rich set of ARGs, 
which included antibiotics that belong to the Reserve, Access or Watch category, such as 
glycopeptides, fluoroquinolones, sulfonamides, macrolides, and tetracyclines. We showed 
that ARG abundance exponentially decreased with time during the first 3 years of life. Many 
highly ARG-abundant species including Escherichia, Klebsiella, Citrobacter species that we 
observed are well-known pathobionts found in the infant gut in early life. High abundance 
of these species and a diverse range of ARGs in their genomes point toward the infant gut, 
acting as an ARG reservoir. This is a concern and further studies are needed to examine the 
causal effect and its consequences on long-term health.
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Introduction

Early life gut microbial colonization has been stu
died extensively, thanks to advancements in meta
genomic sequencing technologies.1 Increasing 
advances and decreasing costs have resulted in sev
eral studies identifying and establishing the role and 
importance of early-life gut microbiota colonization 
in health, innate and adaptive immunity develop
ment, and disease development in later life.2–5 The 
infant gut microbiota is highly dynamic and stabi
lized by the age of 3 years. In the past decade, several 
studies have delineated the effects of factors such as 
mode of delivery, feeding habits, gestational age, 
environmental factors, and antibiotic consumption 
on early life microbial colonization.4–8 Antibiotics 

are among the most frequently prescribed drugs for 
infants, with studies reporting frequent and pro
longed antibiotic use and misuse in neonates and 
children prophylactically, and for precise reasons 
such as specific treatments.9,10 Several adverse 
effects, including altered initial gut microbial colo
nization, which increases the likelihood of allergic 
and metabolic disorders later in life,11 accompany 
the life-saving benefits of antibiotics. The worst 
adverse outcome of antibiotic use is the develop
ment of antibiotic resistance among the gut micro
biota; indeed, antibiotic resistance is considered 
a global threat and is responsible for the death of 
hundreds of thousands of people each year12–14 

reported to reach an estimated 10 million deaths 
by 2050.15
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The number of studies reporting the presence 
and source of antibiotic resistance genes (ARGs) in 
infants has increased drastically owing to the dire 
situation created by the increasing spread, abun
dance, ubiquitous nature of ARGs and the high 
abundance of ARGs reported in Low – to 
Middle – income countries.16,17 Recent studies 
have shed light on ARG abundance and the extent 
to which several factors affect it.16,18–20 Studies 
have demonstrated a high abundance of ARGs in 
infants, even in the absence of antibiotic exposure, 
making the infant gut a reservoir of ARGs.6,21–23 

This is a serious concern, as ARGs can be trans
mitted within bacterial communities by horizontal 
gene transfer, the possibility of which is high in 
a densely populated environment such as the gut. 
Furthermore, ARGs can be transferred between 
bacteria from different species using mobile genetic 
elements and, in some cases, from antibiotic- 
producing bacteria using conjugative methods.24– 

27 The use of antibiotics in infancy disturbs micro
bial composition, results in high antibiotic resis
tance, and can positively select taxa with a high 
abundance of ARGs. Studies have also reported 
that bacteria belonging to Gammaproteobacteria 
have the highest abundance of ARGs16,28,29 , and 
several taxa within this group are pathobionts or 
potential pathogens. Infants can also acquire anti
biotic-resistant strains from mothers through ver
tical transmission.30 These resistant bacteria 
increase the chances of disease, resulting in harder- 
to-treat infections later in life, increase the cost of 
medical care, and can result in mortality.14,15,31

Reports on the presence and persistence of 
ARGs in the antibiotic-naïve infant gut suggest 
the complex nature of this issue, and it has been 
acknowledged that factors, including antibiotic 
exposure, age of life, feeding pattern, and delivery 
mode, affect microbial composition and, there
fore, the resistome profile.16,18–20 Geographic 
location is another factor that affects microbiota 
development; however, it has not been compre
hensively associated with the infant gut ARG pro
file. We thus hypothesized that the infant gut 
resistome profile could vary as the infant grows 
because of different environmental factors, risk of 
infections, and evolving microbial colonization 
that can modify the resistome repertoire by add
ing or removing ARGs. To address this issue, we 

performed a meta-analysis by selecting studies 
that included metagenomic shotgun sequencing 
data of infants under 3 years of age across popula
tions. We then examined the effects of geography, 
delivery mode, age of life, socioeconomic status, 
healthcare access and quality index (HAQ) on the 
infants’ resistome profile and provided 
a comprehensive picture of the ARG burden in 
the infant gut on an international scale. Such 
monitoring will provide a representation of the 
ARG pool in infant gut and help to strategize 
antibiotic use and its alternatives.

Results

In our aim to examine the resistome profile of 
infants in early life, we identified 26 studies to be 
included in our meta-analysis post duplicate 
removal, that fit our inclusion criteria. The meta- 
analysis included studies conducted across popula
tions analyzing data from 6122 metagenome sam
ples, including North America (samples = 2420; 
subjects = 1311), the United Kingdom (samples =  
1519; subjects = 611), New Zealand (samples = 646; 
subjects = 210), Europe (samples = 1162; subjects =  
386), Asia (samples = 70; subjects = 58), and Russia 
(samples = 305; subjects = 70), spanning four conti
nents. Of the 6122 infant samples included in the 
meta-analysis, 43.85% corresponded to Caesarean 
section and 55.97% to vaginally delivered with no 
information about 0.18%. The 6122 metagenome 
samples resulted in the formation of 32,227 early 
life gut metagenome assembled genomes (ELGGs) 
published in our previous study.1 These metagen
ome assembled genomes (MAGs) were used to 
investigate the gut resistome profiles in early life in 
the present study. Other variables considered 
include the socioeconomic status of the country 
and the HAQ index. The HAQ index obtained on 
a scale of 1–100 was transformed into the following 
categories: very low/below (≤50), low/below (≤80), 
and above (>80).

Antibiotic resistance distribution in infants

Of the 6122 samples included, 5886 demonstrated 
resistance to at least one antibiotic class and were 
included in the downstream analysis. The presence 
of 102 different classes of antibiotics, including 
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several multidrug resistance (MDR) classes, was 
detected using RGI with the CARD database. 
Antibiotic classes as assigned by RGI with CARD 
database were used for analysis. MDR assignment 
was done by manual curation when the ARG con
ferred resistance to 3 or more different classes of 
antibiotics. The ARG abundance data per MAG 
were normalized to copies per million (cpm) using 
MAG relative abundance data. Resistance to several 
antibiotics, including glycopeptides, peptides, fluor
oquinolones, tetracyclines, macrolides, and rifamy
cin, was observed in all countries (Figures 1 and S1). 
Glycopeptides were found to be the most abundant 
ARG class and were present in all countries, except 
Singapore. We observed 2 main clusters of antibiotic 
classes, with antibiotic resistance classes showing 

low (e.g., fusidane, nucleoside) vs high (e.g., glyco
peptide, peptide) abundance in most countries. 
Similarly, we observed 2 main clusters of countries 
showing low (e.g., Russia, Bangladesh) vs high (e.g., 
Luxembourg, USA) abundance of antibiotic resis
tance classes (Figure 1).

To understand the relationship between antibio
tic resistance class diversity and countries included 
in our study, we looked at alpha-diversity of ARG 
classes using Shannon index for evenness and rich
ness. We report that countries including 
Luxembourg and Singapore have high ARG class 
diversity with low variance (Figure 2a), whereas 
countries such as the UK, USA, and Italy show 
high diversity and high variance in the Shannon 
index. The Shannon index was significantly different 

Figure 1. Heatmap showing all the classes of antibiotics per country (we only display here logarithmic mean ARG abundance higher 
than 30 cpm). Columns in the heatmap represent countries while rows represent antibiotic classes with top row annotation showing 
continents. Some of the antibiotic classes are abbreviated in the heatmap and are as follows: AMG = “aminoglycoside”, TET  
= “tetracycline”, RIF = “rifampin”, FQ = “fluoroquinolone”, DAA = “disinfecting agents and antiseptics”, DAP = “diaminopyrimidine”, 
SN = “sulfonamide” and AMC = “aminocoumarin”.
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between Luxembourg, Singapore, and all other 
countries and between the UK and USA and the 
majority of other countries (see Wilcoxon test 
adjusted p-values, Figure 2b). We then looked at 
the top 5 most abundant antibiotic classes per coun
try and ranked the countries by the mean ARG 
abundance (Figure 3). All antibiotic classes apart 
from the top 5 shown were grouped as “others.” 
The top 5 ARGs observed in all countries provided 
resistance to fluoroquinolone antibiotics and a MDR 
class (i.e., which confers resistance to fluoroquino
lone, cephalosporin, glycycline, penicillin, tetracy
cline, rifamycin, phenicol antibiotic, disinfecting 

agents, and antiseptics). Other classes that are seen 
in the top 5 are aminocoumarin, macrolide and 
fluoroquinolone, rifamycin, tetracycline, phospho
nic acid antibiotics, fluoroquinolone and tetracy
cline, and peptide antibiotics. Several of the top 5 
most abundant ARGs in infants that we report are 
known to spread to other bacteria and thus classified 
as acquired ARGs.32,33 Based on our overall ARG 
analysis (Figure 1), alpha diversity (Figure 3) and top 
5 ARG (Figure 3) we report that Luxembourg, the 
USA, and the UK showed the highest ARG abun
dance and diversity.

Figure 2. (a) Box plots showing alpha diversity of cpm normalized antibiotic resistance classes relative abundance using Shannon 
index. (b) Heatmap showing adjusted p-values based on alpha diversity pairwise comparisons between countries.
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Most abundant antibiotic resistance classes are 
carried by gram-negative bacteria

Next, we examined the top 20 species that carried 
the highest ARG abundance (in cpm values) and 
found that the majority of these species were gram- 
negative bacteria (Figure 4a). We differentiate here 
the number of ARG per genome vs the number of 
ARG per genome multiplied by the relative abun
dance of the species. It is very important to take both 
aspects into consideration, as some species can carry 
a lot of ARGs while being very low in relative abun
dance, while some species have few ARGs but are 
highly abundant. To consider these 2 aspects, we 
looked at species using both cpm normalization 
and raw ARG count (i.e., raw number of ARGs per 
MAG). In both cases (Figure 4b,c), we found that 
Escherichia coli is the top ARG carrier/abundant 
bacteria overall for most countries. Species 

belonging to the genera Bacillus, Citrobacter, 
Enterobacter, Erwinia, Escherichia, Klebsiella, 
Pseudomonas, and Staphylococcus were the top 
ARG carriers/abundant bacteria for most countries. 
Most of these genera carrying high ARG abundance 
are clinically relevant pathogens and are involved in 
a wide variety of infections including but not limited 
to nosocomial infections and intestinal infections 
(https://www.hartmann-science-center.com/en/ 
hygiene-knowledge/pathogens-a-z).34

Some species such as Escherichia albertii, 
Escherichia ruysiae, and Klebsiella michiganensis 
only appear when looking at the number of ARGs 
per genome without taking the relative abundance 
into account. Interestingly, the top species differ 
from Figures 4b–c for each country, as reflected by 
a slightly different country clustering between the 2 

Figure 3. World map showing the top 5 antibiotic resistance classes per country while the remaining classes are represented as 
“others” in the pie charts for each country. The abundance depicted is normalized to cpm. The radius of each pie corresponds to the 
(ARG)1/4 of the total mean ARG abundance per country. Based on the total ARG abundance per country, we have assigned ranks to the 
countries (number denoted in parentheses) with rank 1 meaning highest total ARG abundance and rank 11 meaning lowest.
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figures. For example, for New Zealand, the top 
species is Citrobacter youngae in Figure 4b while 
it is Escherichia marmotae in Figure 4c.

Furthermore, inspecting the top 5 species per 
country carrying the highest ARG abundance 
(Figure 4b), we report that species belonging to 
the genera Escherichia, Enterobacter and Klebsiella 
were in this category for most countries, while 
species belonging to the genera Pseudoescherichia 
and Bifidobacterium were present in some coun
tries such as New Zealand, the US, and the UK. An 
interesting result was the presence of 
Bifidobacterium in the top 5 cpm normalized but 
not in raw abundance data (i.e., number of genes 
per genome) (Figure 4b,c). This is attributed to the 
high abundance of this genus in early life and the 
presence of several intrinsic resistance genes.35

We then examined the top 5 most abundant 
antibiotic classes per country and the proportion of 
top bacterial species carrying these classes (Figure 5). 
The most abundant antibiotic resistance classes and 
species results were consistent with the above results, 
with the top species belonging to the genera 
Bifidobacterium, Citrobacter, Erysipelatoclostridium, 
Escherichia, and Pseudomonas seen in several coun
tries examined. As observed above (Figure 4b) the 
highly abundant ARG carrier was Enterobacter hor
maechei in Luxembourg, Citrobacter youngae and 
koseri spp. in the US and Escherichia coli was high 
in several countries including Bangladesh, 
Singapore, and Luxembourg. The antibiotic classes 
included glycopeptide, fluoroquinolone, tetracy
cline, and rifamycin, among others, along with 
MDR classes.

Figure 4. (a) Bar plot representing top 20 species that carry highest ARG abundance globally in infants under 3 years of age using mean of 
cpm normalized abundance per MAG grouped by species and with the rest of the species represented as “others”. Top 5 species carrying 
highest ARG abundance per country using (b) cpm normalized data and (c) raw abundance data (i.e., number of ARGs per MAG).
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Antibiotic resistance class relative abundance and 
diversity varies by age of life, country, continent, 
socioeconomic status and HAQ index

We assessed the relationship between ARG class 
abundance and infant age in months, socioeconomic 
status, and the HAQ index (Figure 6). Significant 
differences in the abundance of antibiotic resistance 
classes were found based on these variables. In gen
eral, a higher abundance of ARGs was observed in 
very early life, which decreased with time showing 
an exponential decay (pseudo-R2 = 0.75, AIC =  
8392.51) (Figure 6a,b). While the lowest ARG abun
dance was observed in countries corresponding to 
a very low HAQ index (Figure 6c), we did not 
observe any significant correlation between ARG 
abundance and the HAQ index using Spearman’s 
correlation (p-value = 0.11). Nonetheless, ARG 
abundance was significantly different between coun
try’s socioeconomic status, with low- and middle- 
income countries having low HAQ (Figure 6d) 
(Wilcoxon test, adjusted p-value < 0.001).

To assess the relationship between the composi
tion of antibiotic resistance classes and the study 
variables, beta diversity analyses were performed 
using Jaccard distances, taking time into account 
both as a potential cofounder and repetitive mea
surement (Figure 7). The results show that the ARG 
class composition is significantly different between 
countries (p-value = 0.001, PERMA 
NOVA), socioeconomic status of the country 
(p-value = 0.001, PERMANOVA), continent 
(p-value = 0.001, PERMANOVA), and HAQ index 
(p-value = 0.001, PERMANOVA). Pairwise 
PERMANOVA further indicated that ARG compo
sition between each 2 continent comparisons was 
significantly different (adj. p-value < 0.05) apart 
from Asia vs Europe (Table 1). Further, we looked 
at the ARG composition with respect to time in 
months and observed significant differences 
between months and also between countries for 
each month (Figure S2A and S2B; p-value = 0.001; 
PERMANOVA).

Figure 5. Bar plot displays the average top 5 ARG in cpm for each country along with the proportion contribution of the top 1 bacteria. 
Rest of the species are denoted as “others”. The abbreviations used for ARG classes are as follows: MDR1 = “FQ; cephalosporin; 
glycylcycline; penam; TET; rifamycin; phenicol; disinfectingagentsandantiseptics”; TET = “Tetracycline”; AMC = “aminocoumarin” and 
FQ = “fluoroquinolone”.
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Antibiotic efflux is the most common resistance 
mechanism in infants

The antibiotic resistance mechanisms that are 
most prevalent in infants under 3 years of age 
across populations in our study were investigated. 
Antibiotic efflux (intrinsic) was the most com
mon mechanism of resistance, followed by anti
biotic target alteration and inactivation (both can 
be acquired), overall and for each country 
(Figure 8). Reduced permeability to antibiotics, 
on the other hand, is the least present ARG 

mechanism, and is surprisingly not present in 
Luxembourg despite this country presenting one 
of the highest diversity of antibiotic resistance 
classes.

Discussion

The rise and spread of AMR is many times higher 
than antibiotic consumption and can be attributed 
to over- and misuse of antibiotics and globaliza
tion. Recent studies have monitored the global 

Figure 6. (a) Plot showing exponential decay curve demonstrating the relation between ARG abundance in cpm and age shown as 
time in days (pseudo R-squared = 0.75, AIC = 8392.51). Gray area denote confidence intervals. (b) Heatmap showing adjusted p-values 
(adjusted using Bonferroni Hochberg method) obtained from Wilcoxon test comparing time points pairwise, with the formula 
arg_abundance ~ month with ggpubr package in R. (c) Plot showing association between log transformed ARG abundance normal
ized to cpm and Healthcare access and quality (HAQ) index (d). Box plot showing relation between log transformed ARG abundance in 
cpm and socio-economic status of countries. p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001. Significance was determined using 
the ggpubr package in R using Wilcoxon test.
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ARG profile based on various sampling sites 
including sewage, toilet waste and various habitats.
36–38 However, to the best of our knowledge ours is 

the first meta-analysis to examine the resistome 
profile in early life on an international scale. In 
this meta-analysis, resistance to several drug classes 

Figure 7. Beta diversity as represented using PCoA computed using Jaccard distances showing grouping by (a) country, (b) for each 
country, (c) continent, (d) socio-economic status and (e) HAQ index category. All plots show the same PCoA computed with the same 
distance matrix.

Table 1. Results from PairwiseAdonis test in R showing p-value and p.adjusted values for comparison for beta 
diversity analysis.

HAQ category

pairs Df R2 p.value p.adj sig

verybelow vs below 1 0.00184 0.002 0.006 *
verybelow vs above 1 0.001284 0.014 0.042 .
below vs above 1 0.007512 0.001 0.003 *
Status
Lower middle income vs high income 1 0.000884 0.002 0.006 *
Lower middle income vs upper middle income 1 0.03647 0.001 0.003 *
High income vs upper middle income 1 0.024864 0.001 0.003 *
Continent
Asia vs Europe 1 0.001535 0.01 0.06
Asia vs Oceania 1 0.020091 0.001 0.006 *
Asia vs North America 1 0.002026 0.002 0.012 .
Europe vs Oceanic 1 0.026171 0.001 0.006 *
Europe vs North America 1 0.013297 0.001 0.006 *
Oceania vs North America 1 0.056484 0.001 0.006 *

p adjusted values below 0.05 are considered significant and marked with * or . in the sig column.
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categorized as “reserve” and “watch” by the WHO 
was observed to be high in all the countries. These 
antibiotic classes are suggested to be used as last- 
resort antibiotics; thus, the presence of resistance to 
reserve category antibiotics in early life is alarming. 
We also report an exponential decay of ARG abun
dance (cpm) in infant gut as the infant ages. This is 
complementary to what was reported by Zeng et 
al.,1 showing a decrease of ARG richness per MAG 
with time. We also observed that species carrying 
the most abundant ARGs are clinically relevant in 
infants and belong to the genera Escherichia, 
Klebsiella, Enterobacter, and Pseudomonas.

From the countries included in our study, as per 
the 2016 World Bank classification, only 
Bangladesh was classified as a Lower-middle- 

income and Russia as an upper-middle-income 
country, while all other countries were high- 
income (https://datatopics.worldbank.org/world- 
development-indicators/the-world-by-income-and 
-region.html). These socioeconomic statuses trans
late to the HAQ status, with Bangladesh having the 
lowest HAQ (47.6), and Russia being the second 
with 75.1 in 2016 among the countries included in 
our study.39 We observed a difference in abun
dance and diversity of antibiotic resistance classes 
based on these variables with a low HAQ index 
showing lower relative ARG abundance, without 
any significant correlation between HAQ index 
and ARG abundance. In our study, a similar rela
tionship was observed in terms of socioeconomic 
status, where high-income countries including 

Figure 8. Heatmap showing common antibiotic resistance mechanisms observed in all the countries included in our meta-analysis. 
The abundance is shown as log of mean of normalized cpm values.
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Luxembourg, the US, and the UK showed higher 
relative ARG class abundance and diversity, fol
lowed by middle-income countries. This may be 
because people in high-income countries have 
easier access to antibiotics. Our results with regard 
to ARG abundance and socioeconomic status are 
not in line with Hendriksen et al.37 and this could 
be due to the different approaches used in the study 
design (sewage samples vs infant gut metagen
omes) and also the difference in the geographical 
coverage and sampling times in the 2 studies. 
Furthermore, previous studies have reported 
a difference in antibiotic consumption profiles in 
low- and high-income countries, with low- and 
middle-income countries showing a high and 
increasing trend in the early 2000s. The rate of 
antibiotic use was seen to increase from to 2010– 
2015 in some low-middle-income countries, but it 
varied by antibiotic type, and the overall global 
rates were high.40–42 A high rate of antibiotic con
sumption has also been reported in high-income 
and upper-middle-income countries.43 The socio- 
demographic status of a country has been shown to 
be associated with HAQ39 and a small increase in 
the misuse of antibiotics is observed in middle- and 
high-income countries.44 These differences in rates 
of antibiotic consumption in various countries over 
time also explain the differing results of our study 
from other large-scale resistome studies by 
Hendriksen et al.37 and Munk et al.45

Furthermore, an exponential decrease in ARG 
class abundance with increasing age was identified; 
this can be linked to the development of dynamic 
infant gut microbiota in early life. The species with 
the highest ARG abundance in our study were 
gram-negative and belonged to the genera 
Citrobacter, Escherichia, Enterobacter, 
Pseudomonas, and Klebsiella which are all known 
pathobionts and are responsible for causing sepsis 
in infants.46 These genera were consistently 
detected to carry relatively high ARG abundance 
in our analysis when looking at the number of 
ARGs per genome, and a combination of number 
of ARGs per genome and relative abundance of the 
corresponding species. This points to the fact that 
species carrying high number of ARGs are also 
usually abundant, making these pathobionts multi
drug-resistant bacteria. Nonetheless, some bacteria 
differ depending on these 2 approaches. For 

example, Bifidobacterium species were remarkably 
high in ranking when looking at the combination 
of ARG abundance and number of ARGs per gen
ome, which is surprising and should be further 
studied. Reciprocally, some species of bacteria, 
such as Escherichia albertii or Klebsiella grimontii, 
carry a high number of ARGs but are not very 
abundant, making them pathobionts potentially 
difficult to detect. High number of ARGs could 
also be related to a higher probability to share 
these genes with other gut microbiome bacteria 
through horizontal gene transfer, especially with 
closely related species of the same genus.

A certain advantage of the current meta-analysis 
is that it uses the most updated set of MAGs gen
erated from infants in early life – the global early 
life gut genome (ELGG) reservoir generated as 
a part of previous meta-analysis consisting of data 
from multiple countries.1 Our analysis adds to our 
previous study1 but is independent of antibiotic use 
or health status of the individual, which would 
enable a comprehensive overview, as these meta
data were absent in many cases. Though our ana
lysis might not be directly useful for the creation of 
antimicrobial stewardship programs, it will help 
form the basis of further studies to look into loca
lized resistome profiles in the country to gain dee
per insights. Certain limitations are that, as MAGs 
are generated only from shotgun sequencing data, 
we were restricted to the number of studies/coun
tries that passed the inclusion criteria to be 
included in the analysis. This resulted in many 
data gaps due to the lack of datasets from many 
low- and middle-income countries. Another lim
itation of the study is the fact that socioeconomic 
variables can vary in large countries from one geo
graphical location to another.39 However, we could 
not consider this factor in our analysis as our meta- 
analysis was focused on examining resistome pro
files from ELGGs generated as a part of our pre
vious study (Zheng et al., 2022) which included 26 
studies based on the search criteria. Furthermore, 
the depth of sequencing, longitudinal sample col
lection, and varying time durations of the studies 
are all factors that restrict the analysis.

In conclusion, antibiotic resistance was high in 
infants in all countries included in the meta- 
analysis and was associated with the geography, 
age, and demographics of the country. Further 
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studies that combine antibiotic use and resistance 
data in infants are needed to limit the use of anti
biotics in early life. Based on our analysis, we 
understand that the resistome profile in early life 
is not similar across populations and differences 
exist in countries; with further analysis needed to 
understand the differences within countries. The 
presence of specific antibiotic stewardship pro
grams reduces the use of antibiotics in NICUs.9 

This, along with the high resistance rates reported 
and the high use of antibiotics due to the COVID- 
19 pandemic,47 emphasizes the need for stricter 
guidelines and updated antibiotic stewardship pro
grams that can be location specific and be based on 
a regularly updated database of ARG presence in 
individuals. Irrespective of whether the final aim is 
location-specific antibiotic stewardship programs 
or studying the resistome profile of individuals 
with respect to antibiotic use, a special focus must 
be made on infant groups in various geographic 
locations due to the high importance of microbiota 
in early life forming the foundation for later life.

Methods

Publicly available data selection and retrieval

The PubMed database was searched using NCBI to 
identify studies including shotgun sequencing data 
generation/analysis in 2020. This search was 
restricted to June 2020 and was carried out using 

the following keyword combinations: “antibiotics 
and infant metagenomics”, “infant gut microbiome 
and antibiotics”, “antibiotics and infant gut micro
biota, and “mother and infant metagenomics”. The 
inclusion of papers was limited to papers published in 
English and peer-reviewed, and those that provided 
metadata about the metagenome samples (Figure 9). 
This filtering along with duplicate removal resulted in 
26 papers matching the inclusion criteria, resulting in 
6122 metagenome samples that were matched to the 
metadata from each paper. The metadata extracted 
from each paper included delivery mode, infant, and 
maternal antibiotic information, day of life of sample 
collection, sex, accession ID, and country of study. 
The shotgun sequencing data for the 6122 samples 
were downloaded using NCBI SRA by matching the 
accession IDs published for each study using Prefetch. 
Fastq-dump with “–split-3” from SRA tools 
(v2.9.2_1) was used to convert the downloaded SRA 
files to paired-end FASTQ files.

Data processing and antibiotic resistance analysis

FASTQ files were first trimmed and filtered to 
remove any human host contamination (Homo 
sapiens database) using KneadData (v0.7.2) with 
default parameters. Quality-controlled reads 
were then concatenated and used for taxonomic 
classification using Metaphlan3 as part of the 
Humann3 run.48

Figure 9. Diagrammatic representation of the study design delineating the inclusion and exclusion criteria for studies included in the 
meta-analysis. Figure was created using Biorender.
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The 6122 metagenomes filtered reads were used 
for generation of metagenome-assembled geomes 
(MAGs), resulting in the the formation of 32,277 
early life gut genomes (ELGG).1 The process used 
for generation of MAGs is described in detail in 
Zeng et al.1 Briefly, the filtered reads from 6122 
metagenomes were assembled using MegaHIT 
(v1.1.3) with option “-min-contig-len 1000”, which 
resulted in 29,912,553 contigs. The MAGs were 
generated per sequencing run using three metage
nomic binning tools (MetaBAT v2.12.1, MaxBin 
v2.2.624, and CONCOCT v1.0.025) using 
metaWRAP (v1.3.1) with default parameters. The 
minimal contig size for binning was set as default 
with 1000 bp (except for MetaBAT2, which required 
at least 1500 bp). The resulting bins were refined 
using Bin_refinement module of metaWRAP with 
options “-c 50 -x 10”. CheckM (v1.0.12) was used to 
determine the quality of bins. Taxonomic annota
tion of the resulting MAGs was performed using 
GTDB-Tk (v2.1.0). The resulting 32,277 genome 
assemblies are available online and were used for 
resistome analysis. To examine the ARG profile 
globally in the infant gut, RGI main (v6.0.0) with 
CARD database49 was used, using default para
meters on the MAGs and considered only “perfect” 
and “strict” hits for further analysis. The quant_bin 
module of the metaWRAP (v1.3.1) tool was used to 
obtain genome copies per million reads (relative 
abundance) for each MAG per sample. To obtain 
gene copies per million reads (cpm) for each anti
biotic resistance gene for each MAG, we multiplied 
the gene count per MAG by the MAG cpm values. 
Throughout the study, we used average cpm values 
per sample for each gene (for each sample or for 

each variable or group of variables considered), cal
culated from the gene cpm values for each MAG.

Bioinformatics and statistical analysis

Results from RGI were either used directly as count/ 
richness of ARGs/antibiotic classes per MAG, or 
after normalizing to copies per million (cpm) using 
MAG relative abundance (in cpm). HAQ index data 
for 2016 were obtained from a previous study39 and 
socioeconomic status data for the countries for 
the year 2016 were obtained from the World Bank 
(https://datatopics.worldbank.org/world- 
development-indicators/the-world-by-income-and- 
region.html) (Table 2). The HAQ index provides 
information about gains and gaps in personal 
health-care access and quality in a country. The 
HAQ index was obtained on a scale of 1–100 and 
for further analysis it was transformed into the fol
lowing categories: very low/below (≤50), low/below 
(≤80), and above (>80). Downstream processing of 
the results along with visualization was performed in 
R using several packages, including ggtree, maps, 
ggplot2, complexHeatmap, vegan, and scatterpie. 
Statistical analysis was performed in R using the 
pairwiseAdonis, ggpubR, and ggsignify packages. 
PERMANOVA and pairwise PERM 
ANOVA were performed using the ‘adonis2’ and 
‘pairwiseadonis’ functions in R. To account for repe
titive measurements, we used the ‘strata’ option in 
adonis2. To account for time as a potential cofoun
der, we grouped the samples by month categories (0, 
1, 3, 6, 12, 18, 24, 30, 36 months) and added it in 
adonis2 for all comparisons (e.g., ~ country +  
month). To perform pairwise comparison, as 

Table 2. Table displays the socio-economic status and Health care access and quality index score for 
all the countries included in our analysis.

Country
Low-middle or High income  

(World bank classification 2016)
Healthcare access and quality (HAQ) index – for 2016,  

absolute change from 2000–2016

Bangladesh Lower middle 47.6 (44.3–50.9), 20.1 (16.3–23.8)
Estonia High 85.9 (83.6–88.3), 14.3 (11.8–17.0)*
Finland High 95.9 (94·6–96.9), 8.1 (6.7–9.5)
Italy High 94.9 (93.4–96.0), 6.1 (4.7–7.4)*
Luxembourg High 96.0 (94.4–97.3), 5.7 (3.9–7.4)*
New Zealand High 92.4 (90.3–94.3), 5.4 (3.1–7.4)
Russia Upper middle income 75.1 (67.7–81.7), 12.6 (5.0 to 19.4)*
Singapore High 90.6 (87.2 –93.3), 10.9 (7.1–14.8)*
Sweden High 95.5 (93.4–97.2), 3.1 (1.0–5.0)*
UK High 90.5 (89.6–91.3), 6.5 (5.9–7.2)*
USA High 88.7 (88.0–89.4), 1.9 (1.4–2.5)*
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mentioned in the text, we used the Wilcoxon test. 
The relationship between age (day of life) and aver
aged ARG abundance per time was modeled using 
an exponential decay function: 

ARG tð Þ ¼ a:e� bt (1) 

where ARG(t) is the number of ARG at a given 
time t, a and b are positive parameters. To fit the 
parameters of (1), we used the ‘nls’ function of 
R. Asymptotic confidence for expected response 
intervals were calculated as described previously 
(https://www.jchau.org/2021/07/12/asymptotic- 
confidence-intervals-for-nls-regression-in-r/). 
To assess the goodness of the fit, we used pseudo 
R-squared and AIC criteria. Spearman’s correla
tion coefficient was used to determine the cor
relation between ARG abundance and study 
variables such as age, socioeconomic status, 
and HAQ index. Throughout the study, statisti
cal significance was determined by 999 permuta
tions for PERMANOVA, and p-values were 
corrected using the Benjamini–Hochberg 
method. Additionally, p.adjusted values below 
0.05 were considered significant.
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